Autologous cell using for the restoration of functional defects in patients with ischemic cerebrovascular accident

  • E.G. Pedachenko Romodanov Neurosurgery Institute, NAMS of Ukraine, Kyiv
  • V.V. Moroz Romodanov Neurosurgery Institute, NAMS of Ukraine, Kyiv
  • V.A. Yatsyk Romodanov Neurosurgery Institute, NAMS of Ukraine, Kyiv
  • U.I. Malyar Romodanov Neurosurgery Institute, NAMS of Ukraine, Kyiv
  • L.D. Liubich Romodanov Neurosurgery Institute, NAMS of Ukraine, Kyiv https://orcid.org/0000-0001-6382-3643
  • D.M. Egorova Romodanov Neurosurgery Institute, NAMS of Ukraine, Kyiv
Keywords: ischemic insult; autologic transplantation; mesenchymal stem cells; bone marrow; clinical trials.

Abstract

Stroke is a global medical and socio-economic problem and a great demand for alternative therapies, the leading one being stem cell (SC) therapy. Pathogenetic processes in ischemic stroke (II) trigger the mechanisms of necrotic and apoptotic death of neurons with the formation of the central infarct zone («core of ischemia») and the ischemic «penumbra» zone; the severity and reversibility of the injury directly depends on the duration of ischemia. In parallel with pathogenetic processes, endogenous neurogenesis occurs – the proliferation of neurogenic stem and progenitor cells (NSC/NPC) and their migration into the ischemic focus; however, most NSCs and newly formed neurons undergo apoptosis and recovery of lost functions does not occur. Significant efforts are being made to find ways to control neurogenesis, in particular through the transplantation of exogenous SCs. The main factors preventing the use of SCs in humans are moral, ethical, religious and legal aspects related to the source and method of obtaining cells, as well as possible immunocompromised complications due to incompatibility of donor cells with the recipient of the main histocompatibility complex antigens. The safest is the use of autologous SCs (the patient’s own cells), as it does not require the use of immunosuppressive protocols. Due to the relative safety and ease of production, the most common are multipotent mesenchymal stem cells (MSCs), namely MSCs of the bone marrow (BM). Numerous preclinical studies in experimental animals with modeled II, as well as clinical trials conducted over the past 15 years, have shown the safety and feasibility of transplantation of autologous MSCs in patients with severe neurological deficits after II. Two different approaches to the use of MSCs are discussed: neuroprotection in the acute phase and neurorestoration in the chronic phase II. Proposals are currently being developed for phase II/III clinical trials in acute and chronic stroke using BM MSCs, the results of which will form the basis for certified standardized II treatment protocols.

Downloads

Download data is not yet available.

References

Boncoraglio GB, Ranieri M, Bersano A, Parati EA, Del Giovane C. Stem cell transplantation for ischemic stroke. Cochrane Database Syst Rev. 2019;5(5):CD007231. https://doi.org/10.1002/14651858.CD007231.pub3. PMID: 31055832; PMCID: PMC6500737.

Global Stroke Fact Sheet. Available from: www.world-stroke.org/assets/downloads/WSO_Global_Stroke_Fact_Sheet.pdf.

Dzjak LA., Zozulja OA, Kligunenko EN, Kushh EA. Novye vozmozhnosti mul’timodal’noj farmakoterapii ostrogo perioda ishemicheskogo insulta. Mіzhnar. Nevrol. Zhurn. 2015;(5):39-44. (In Russian)

Mishchenko TS. Epidemiology of cerebrovascular diseases and organization of medical care for patients with stroke in Ukraine. Ukrainian Announcer of Psikhonevrologii. 2017; 25(1,90):22-24. (In Russian)

Tovazhnyanska OL, Lapshina IO, Soloviova YeT. Meldonium in patients with ischemic stroke in the early recovery period. Mіzhnar. Nevrol. Zhurn. 2017; 6(92):47-50. (In Russian) https://doi.org/10.22141/2224-0713.6.92.2017.111587

European Stroke Organisation (ESO) Executive Committee; ESO Writing Committee. Guidelines for management of ischaemic stroke and transient ischaemic attack 2008. Cerebrovasc Dis. 2008;25(5):457-507. https://doi.org/10.1159/000131083.

Lee MC, Jin CY, Kim HS, et al. Stem cell dynamics in an experimental model of stroke. Chonnam Med J. 2011;47(2):90-8. https://doi.org/10.4068/cmj.2011.47.2.90.

Glover LE, Tajiri N, Weinbren NL et al. A step-up approach for cell therapy in stroke: translational hurdles of bone marrow-derived stem cells. Transl Stroke Res. 2012;3(1):90-8. https://doi.org/10.1007/s12975-011-0127-8.

Kahle KT, Simard JM, Staley KJ, Nahed BV, Jones PS, Sun D. Molecular mechanisms of ischemic cerebral edema: role of electroneutral ion transport. Physiology (Bethesda). 2009;24:257-65. https://doi.org/10.1152/physiol.00015.2009. PMID: 19675357.

Castillo MR, Babson JR. Ca(2+)-dependent mechanisms of cell injury in cultured cortical neurons. Neuroscience. 1998;86(4):1133-44. https://doi.org/10.1016/s0306-4522(98)00070-0. PMID: 9697120.

De SR, Ajmone-Cat MA, Nicolini A, Minghetti L. Expression of phosphatidylserine receptor and down-regulation of pro-inflammatory molecule production by its natural ligand in rat microglial cultures. J Neuropathol Exp Neurol. 2002;61(3):237-44. https://doi.org/10.1093/jnen/61.3.237. PMID: 11895038.

Di Paolo G, De Camilli P. Phosphoinositides in cell regulation and membrane dynamics. Nature. 2006;443(7112):651-7. https://doi.org/10.1038/nature05185. PMID: 17035995.

Farooqui AA, Ong WY, Horrocks LA. Biochemical aspects of neurodegeneration in human brain: involvement of neural membrane phospholipids and phospholipases A2. Neurochem Res. 2004;29(11):1961-77. https://doi.org/10.1007/s11064-004-6871-3. PMID: 15662832

Morgan CP, Skippen A, Segui B et al. Phosphorylation of a distinct structural form of phosphatidylinositol transfer protein alpha at Ser166 by protein kinase C disrupts receptor-mediated phospholipase C signaling by inhibiting delivery of phosphatidylinositol to membranes. J Biol Chem. 2004;279(45):47159-71. https://doi.org/10.1074/jbc.M405827200.

Grotta JC, Albers GW, Broderick JP et al. Stroke: Pathophysiology, Diagnosis, and Management. Elsevier Inc., 2015.

Tsymbalyuk VI, red. Neyrokhirurhiya: Pidruchnyk. Vinnytsya: Nova Knyha; 2011. P.72-3. (In Ukrainian)

Bao X, Feng M, Wei J et al. Transplantation of Flk-1+ human bone marrow-derived mesenchymal stem cells promotes angiogenesis and neurogenesis after cerebral ischemia in rats. Eur J Neurosci. 2011;34(1):87-98. https://doi.org/10.1111/j.1460-9568.2011.07733.x.

Grishchenko VI. Problema stvolovykh kletok: fundamentalnye i prikladnye aspekty. Zhurnal AMN Ukra-yini. 2004;10(2):253-8. (In Russian)

Temple S. The development of neural stem cells. Nature. 2001;414(6859):112-7. https://doi.org/10.1038/35102174.

Bonnamain V, Neveu I, Naveilhan P. Neural stem/progenitor cells as a promising candidate for regenerative therapy of the central nervous system. Front Cell Neurosci. 2012;6:17. https://doi.org/10.3389/fncel.2012.00017. PMID: 22514520; PMCID: PMC3323829

Yu H, Cao B, Feng M et al. Combinated transplantation of neural stem cells and collagen type I promote functional recovery after cerebral ischemia in rats. Anat Rec (Hoboken). 2010;293(5):911-7. https://doi.org/10.1002/ar.20941. PMID: 20191618.

WMA Declaration of Helsinki ‒ Ethical Principles for Medical Research Involving Human Subjects. Available from: https://zakon.rada.gov.ua/laws/show/990_005. (In Ukrainian)

https://zakon.rada.gov.ua/laws/show/995_575.

https://zakon.rada.gov.ua/laws/show/2231-IV.

https://zakon.rada.gov.ua/laws/show/2801-12.

https://zakon.rada.gov.ua/laws/show/z1697-13.

Liubich LD, Lisyany MI. Imunobiolohichni vlastyvosti neyrohennykh klityn fetal’noho mozku. I. Ekspresiya molekul z imunnymy vlastyvostyamy. Fiziolohichnyy zhurnal, 2017;63(6):118-35. (In Ukrainian)

www.ClinicalTrials.gov

Wei L, Fraser JL, Lu ZY, Hu X, Yu SP. Transplantation of hypoxia preconditioned bone marrow mesenchymal stem cells enhances angiogenesis and neurogenesis after cerebral ischemia in rats. Neurobiol Dis. 2012;46(3):635-45. https://doi.org/10.1016/j.nbd.2012.03.002.

Yagi H, Soto-Gutierrez A, Parekkadan B et al. Mesenchymal stem cells: Mechanisms of immunomodulation and homing. Cell Transplant. 2010;19(6):667-79. https://doi.org/10.3727/096368910X508762.

Shen LH, Li Y, Chen J et al. Therapeutic benefit of bone marrow stromal cells administered 1 month after stroke. J Cereb Blood Flow Metab. 2007;27(1):6-13. https://doi.org/10.1038/sj.jcbfm.9600311.

Jang DK, Park SI, Han YM et al. Motor-evoked potential confirmation of functional improvement by transplanted bone marrow mesenchymal stem cell in the ischemic rat brain. J Biomed Biotechnol. 2011;2011:238409. https://doi.org/10.1155/2011/238409.

Zhang L, Li Y, Zhang C, Chopp M, Gosiewska A, Hong K. Delayed administration of human umbilical tissue-derived cells improved neurological functional recovery in a rodent model of focal ischemia. Stroke. 2011;42(5):1437-44. https://doi.org/10.1161/STROKEAHA.110.593129.

Walker PA, Letourneau PA, Bedi S, Shah SK, Jimenez F, Cox CS Jr. Progenitor cells as remote «bioreactors»: neuroprotection via modulation of the systemic inflammatory response. World J Stem Cells. 2011;3(2):9-18. https://doi.org/10.4252/wjsc.v3.i2.9.

Burns TC, Verfaillie CM, Low WC. Stem cells for ischemic brain injury: a critical review. J Comp Neurol. 2009;515(1):125-44. https://doi.org/10.1002/cne.22038. PMID: 19399885; PMCID: PMC4112591

Gutiérrez-Fernández M, Fuentes B, Rodríguez-Frutos B, Ramos-Cejudo J, Vallejo-Cremades MT, Díez-Tejedor E. Trophic factors and cell therapy to stimulate brain repair after ischaemic stroke. J Cell Mol Med. 2012;16(10):2280-90. https://doi.org/10.1111/j.1582-4934.2012.01575.x.

Li J, Zhu H, Liu Y et al. Human mesenchymal stem cell transplantation protects against cerebral ischemic injury and upregulates interleukin-10 expression in Macaca fascicularis. Brain Research. 2010;1334:65-72. https://doi.org/10.1016/j.brainres.2010.03.080.

Honmou O, Houkin K, Matsunaga T et al. Intravenous administration of auto serum-expanded autologous mesenchymal stem cells in stroke. Brain. 2011;134(Pt 6):1790-807. https://doi.org/10.1093/brain/awr063.

Borlongan CV, Glover LE, Tajiri N, Kaneko Y, Freeman TB. The great migration of bone marrow-derived stem cells toward the ischemic brain: therapeutic implications for stroke and other neurological disorders. Prog Neurobiol. 2011;95(2):213-28. https://doi.org/10.1016/j.pneurobio.2011.08.005.

Honmou O, Onodera R, Sasaki M, Waxman SG, Kocsis JD. Mesenchymal stem cells: therapeutic outlook for stroke. Trends Mol Med. 2012;18(5):292-7. https://doi.org/10.1016/j.molmed.2012.02.003.

Lindvall O, Kokaia Z. Stem cell research in stroke: how far from the clinic? Stroke. 2011;42(8):2369-75. https://doi.org/10.1161/STROKEAHA.110.599654.

Iarmoliuk IeS, Tsymbaliuk VІ, Staino LP, Savchuk ОV, Diatel МV. Effect of transplantation of cell suspension from embryonic nervous tissue and bone marrow on postischemic cerebral angiogenesis and restoration of limb motor function in rats with experimental ischemic stroke. Cell and Organ Transplantology. 2015; 3(2):125-32. https://doi.org/10.22494/COT.V3I2.16

Zhang ZG, Chopp M. Neurorestorative therapies for stroke: underlying mechanisms and translation to the clinic. Lancet Neurol. 2009;8(5):491-500. https://doi.org/10.1016/S1474-4422(09)70061-4, 2011

Kalladka D, Sinden J, Pollock K et al. Human neural stem cells in patients with chronic ischaemic stroke (PISCES): a phase 1, first-in-man study. The Lancet. 2016;388(10046):787-96. ISSN 0140-6736, https://doi.org/10.1016/S0140-6736(16)30513-X;

Sinden JD, Hicks C, Stroemer P, Vishnubhatla I, Corteling R. Human neural stem cell therapy for chronic ischemic stroke: charting progress from laboratory to patients. Stem Cells Dev. 2017;26(13):933-47. https://doi.org/10.1089/scd.2017.0009.

Muir KW. Clinical trial design for stem cell therapies in stroke: What have we learned? Neurochem Int. 2017;106:108-13. https://doi.org/10.1016/j.neuint.2016.09.011.

Muir KW, Bulters D, Willmot M et al. Intracerebral implantation of human neural stem cells and motor recovery after stroke: multicentre prospective single-arm study (PISCES-2). Journal of Neurology, Neurosurgery & Psychiatry. 2020;91:396-401. https://doi.org/10.1136/jnnp-2019-322515

Nagpal A, Choy FC, Howell S et al. Safety and effectiveness of stem cell therapies in early-phase clinical trials in stroke: a systematic review and meta-analysis. Stem Cell Res Ther. 2017;8(1):191. https://doi.org/10.1186/s13287-017-0643-x. PMID: 28854961; PMCID: PMC5577822

Suárez-Monteagudo C, Hernández-Ramírez P, Alvarez-González L et al. Autologous bone marrow stem cell neurotransplantation in stroke patients. An open study. Restor Neurol Neurosci. 2009;27(3):151-61. https://doi.org/10.3233/RNN-2009-0483. PMID: 19531871

Lee JS, Hong JM, Moon GJ, Lee PH, Ahn YH, Bang OY; STARTING collaborators. A long-term follow-up study of intravenous autologous mesenchymal stem cell transplantation in patients with ischemic stroke. Stem Cells. 2010;28(6):1099-106. https://doi.org/10.1002/stem.430. PMID: 20506226

Janowski M, Wagner DC, Boltze J. Stem cell-based tissue replacement after stroke: factual necessity or notorious fiction? Stroke. 2015;46(8):2354-63. https://doi.org/10.1161/STROKEAHA.114.007803.

Goldman SA. Stem and progenitor cell-based therapy of the central nervous system: hopes, hype, and wishful thinking. Cell Stem Cell. 2016;18(2):174-88. https://doi.org/10.1016/j.stem.2016.01.012. PMID: 26849304; PMCID: PMC5310249

Borlongan CV. Age of PISCES: stem-cell clinical trials in stroke. Lancet. 2016;388(10046):736-8. https://doi.org/10.1016/S0140-6736(16)31259-4.

Borlongan CV. Preliminary reports of stereotaxic stem cell transplants in chronic stroke patients. Mol Ther. 2016;24(10):1710-1. https://doi.org/10.1038/mt.2016.186.

Jaillard A, Hommel M, Moisan A et al. (for the ISIS-HERMES Study Group). Autologous Mesenchymal stem cells improve motor recovery in subacute ischemic stroke: a randomized clinical trial. Transl Stroke Res. 2020;11(5):910-23. https://doi.org/10.1007/s12975-020-00787-z.

Published
2020-12-31
How to Cite
Pedachenko, E., Moroz, V., Yatsyk, V., Malyar, U., Liubich, L., & Egorova, D. (2020). Autologous cell using for the restoration of functional defects in patients with ischemic cerebrovascular accident. Ukrainian Interventional Neuroradiology and Surgery, 33(3), 83-93. https://doi.org/10.26683/2304-9359-2020-3(33)-83-93