Differential application of laser and navigation technologies in surgery of periventricular oligoastrocytomas

  • V.M. Kliuchka The SI Romodanov Neurosurgery Institute NAMS of Ukraine
  • A.V Rozumenko The SI Romodanov Neurosurgery Institute NAMS of Ukraine
  • V.D. Rozumenko The SI Romodanov Neurosurgery Institute NAMS of Ukraine
  • V.M. Semenova The SI Romodanov Neurosurgery Institute NAMS of Ukraine
  • V.Ya. Shutka Bukovinian State Medical University
  • V.M. Zagorodniy SO «Scientific-Practical Center of Endovascular Neuroradiology NAMS of Ukraine»
  • S.V Konotopchik SO «Scientific-Practical Center of Endovascular Neuroradiology NAMS of Ukraine»
  • I.I. Al-Qashqish SO «Scientific-Practical Center of Endovascular Neuroradiology NAMS of Ukraine»
Keywords: oligoastrocytoma, histology, periventricular growth, laser radiation, neuronavigation, surgery.


Objective – to improve treatment results in patients with periventricular oligoastrocytomas.

Materials and methods. Oligoastrocytoma (OA) WHO Grade II was diagnosed in 16 (19.8 %) patients, OA WHO Grade III – in 65 (80.2 %). Diagnostic included the analysis of CT, MRI, SPECT in native modes and with contrast enhancement. As a source of laser radiation, the semiconductor laser «Lika-Chirurg» (wave length 0.808 and 1.47 p,m, 30 and 7 W) was used. The navigational support for surgical interventions was carried out using the Medtronic StealthStation TREONPlus (Medtronic, USA) surgical navigation system.

Results. In 27 (33.3 %) patients with OA was a predominance of oligodendroglial component, in 28 (34.6 %) – astrocytic component, in 26 (32.1 %) – an equal representation of both components cells. The surgical treatment was the following: total removal – in 55 (67.9 %) patients, subtotal removal – in 26 (22.1 %). In the presurgery period quality of life with KRI > 80 % was assessed in 34 (41.9 %) patients, in postsurgery period – in 77 (95.1 %).

Conclusions. Differential use of laser technologies and navigation support, taking into account the OA histology and topography, allows to optimize surgical tactics and totally remove a tumor without neural structuresinjury.


Download data is not yet available.


Ostrom Q, Gittleman H, Farah P et al. CBTRUS Statistical Report: Primary Brain and Central Nervous System Tumors Diagnosed in the United States in 20062010. Neuro-Oncol. 2013;15 (suppl. 2):ii1-ii56. doi: 10.1093/neuonc/not151.

Cryan J, Haidar S, Ramkissoon L et al. Clinical multiplexed exome sequencing distinguishes adult oli- godendroglial neoplasms from astrocytic and mixed lineage gliomas. Oncotarget. 2014;5(18):8083-92. doi:10.18632/oncotarget.2342. PubMed PMID: 25257301

Hewer E, Vajtai I, Dettmer M, Berezowska S, Vassel- la E. Combined ATRX/IDH1 immunohistochemistry predicts genotype of oligoastrocytomas. Histopathol. 2015; 68(2):272-8. doi: 10.1111/his.12743. Epub 2015

Cooper E. The relation of oligocytes and astrocytes in cerebral tumors. J. Pathol. Bacteriol. 1935;41(2):259- 66.

Bai H, Zou Y, Lee A, Tang X et al. Does morphological assessment have a role in classifying oligoastrocytoma as «oligodendroglial» versus «astrocytic»? Histopathol. 2016;68(7):1114-5. doi: 10.im/his.12891.

Gaviani P. P10.26 Anaplastic oligodendroglioma and oligoastrocytoma without 1p-19q co-deletion: a mono-institutional retrospective study. Neuro-Oncol. 2017;19(suppl. 3):iii91.

Huse J, Diamond E, Wang L, Rosenblum M. Mixed glioma with molecular features of composite oligodendroglioma and astrocytoma: a true «oligoastrocy- toma»? Acta Neuropatholog. 2014;129(1):151-3.

Chen R, Ravindra V, Cohen A et al. Molecular features assisting in diagnosis, surgery, and treatment decision making in low-grade gliomas. Neurosurg Focus. 2015;38(3):E2. doi: 10.3171/2015.1.FOCUS14745.

Capper D, Reuss D, Schittenhelm J et al. Mutation-specific IDH1 antibody differentiates oligodendrogliomas and oligoastrocytomas from other brain tumors with oligodendroglioma-like morphology. Acta Neuro- patholog. 2011;121(2):241-52. doi: 10.1007/s00401-010-0770-2. Epub 2010 Nov 11.

Shaw E, Scheithauer B, O'Fallon J, Tazelaar H, Davis D. Oligodendrogliomas: the Mayo Clinic experience. J. Neurosurg. 1992;76(3):428-34.

Vogelbaum M, Hu C, Peereboom D et al. Phase II trial of pre-irradiation and concurrent temozolomide in patients with newly diagnosed anaplastic oligodendrogliomas and mixed anaplastic oligoastrocytomas: long-term results of RTOG BR0131. Neuro-Oncol. 2015;124(3):413-20. doi: 10.1007/s11060-015-1845- 7. Epub 2015 Jun 19.

Cairncross G, Wang M, Shaw E et al. Phase III Trial of Chemoradiotherapy for Anaplastic Oligodendroglioma: Long-Term Results of RTOG 9402. J. Clin. Oncol. 2013;31(3):337-43. doi: 10.1200/JCO.2012.43.2674. Epub 2012 Oct 15.

Macdonald D, Cascino T, Schold S, Cairncross J. Response criteria for phase II studies of supratentorial malignant glioma. J. Clin. Oncol. 1990; 8(7):1277- 80.

Schittenhelm J. Integrated diagnostic approach for adult oligodendroglioma and oligoastrocytoma. Brain Disorders & Therapy. 2015. doi: 10.4172/2168- 975x.1000187

Louis D, Perry A, Reifenberger G et al. The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary. Acta Neuropatholog. 2016;131(6):803-20. doi: 10.1007/ s00401-016-1545-1. Epub 2016 May 9.

How to Cite
Kliuchka, V., Rozumenko, A., Rozumenko, V., Semenova, V., Shutka, V., Zagorodniy, V., Konotopchik, S., & Al-Qashqish, I. (2017). Differential application of laser and navigation technologies in surgery of periventricular oligoastrocytomas. Ukrainian Interventional Neuroradiology and Surgery, 22(4), 60-68. https://doi.org/10.26683/2304-9359-2017-4(22)-60-68