Determining ischemic stroke subtype: an improved algorithm and its use in a comprehensive stroke unit

Keywords: cerebral stroke; ischemic cerebral stroke; etiology; stroke subtype; diagnostic algorithm; comprehensive stroke unit.


Objective ‒ to implement a inified algorithm for determining an ischemic cerebral stroke (ICS) etiological subtype and evaluate the results of its use in patients who were admitted to a comprehensive stroke unit (CSU).
Materials and methods. The study enrolled 689 patients with ICS (43.4 % women, 56.6 % men; median age 68.1 years (59.7–75.5)) who in 2010 to 2018 were admitted to a hospital unit where the structure and processes correspond to the principles of CSU. The participants’ age, gender, National Institutes of Health Stroke Scale (NIHSS) and modified Rankin Scale scores were analyzed. All patients underwent an initial workup that included neuroimaging, vascular imaging, a cardiologist’s exam and a set of laboratory tests, and an advanced evaluation, at his physician discretion. All ICS was assigned to one of the four etiological subtypes: cardioembolic, atherosclerotic, lacunar or other.
Results. According to the proposed algorithm, 294 (42.7 %) cases were assigned to cardioembolic subtype, 282 (40.9 %) to atherosclerotic subtype, 52 (7.5 %) to lacunar subtype and 61 (8.9 %) to ischemic cerebral stroke unknown etiology. Differences in the shown frequency of the main etiological ICS subtypes compared to the results of epidemiological studies are due to the greater severity of ICS in our sample: baseline median NIHSS total score was 10 (6–17), and median modified Rankin scale score was 4 (3–5), and, on the other hand, to in-depth assessment using modern diagnostic technologies and a longer length of stay that allowed for the tests to be completed.
Conclusions. Thorough evaluation and the use of a unified algorithm based on causal etiological classifications allow to successfully determine an ICS subtype in the CSU patients with low proportion of ICS of unknown etiology, which is the key to effective secondary prevention.


Download data is not yet available.


Feigin VL, Stark BA, Johnson CO, et al. Global, regional, and national burden of stroke and its risk factors, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet Neurology. 2021;20:795-820. doi: 710.1016/S1474-4422(1021)00252-00250.

Feigin VL, Brainin M, Norrving B, et al. World Stroke Organization (WSO): Global Stroke Fact Sheet 2022. Int J Stroke. 2022 Jan;17(1):18-29. doi: 10.1177/17474930211065917.

Mijajlović MD, Pavlović A, Brainin M, et al. Post-stroke dementia – a comprehensive review. BMC Med. 2017 Jan 18;15(1):11. doi: 10.1186/s12916-017-0779-7.

Hachinski V, Einhäupl K, Ganten D, et al. Preven-ting dementia by preventing stroke: The Berlin Manifesto. Alzheimers Dement. 2019 Jul;15(7):961-84. doi: 10.1016/j.jalz.2019.06.001.

Medeiros GC, Roy D, Kontos N, Beach SR. Post-stroke depression: A 2020 updated review. Gen Hosp Psychiatry. 2020 Sep-Oct;66:70-80. doi: 10.1016/j.genhosppsych.2020.06.011.

Kim J, Thayabaranathan T, Donnan GA, et al. Global Stroke Statistics 2019. Int J Stroke. 2020 Oct;15(8):819-38. doi: 10.1177/1747493020909545.

GBD 2019 Diseases and Injuries Collaborators. Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet. 2020 Oct 17;396(10258):1204-22. doi: 10.1016/S0140-6736(20)30925-9.

Pandian JD, Sebastian IA. Integrated approach to stroke burden: are we doing enough? Lancet Neurol. 2021;20:774. doi: 10.1016/S1474-4422(21)00287-8.

Owolabi MO, Suwanwela NC, Yaria J. Barriers to implementation of evidence into clinical practice in low-resource settings. Nat Rev Neurol. 2022 Aug;18(8):451-2. doi: 10.1038/s41582-022-00690-1.

Harsha KJ. Imprecise eponyms in stroke medicine – A growing need for uniform terminologies/definitions across the globe. Neurol India. 2019 Mar-Apr;67(2):364-9. doi: 10.4103/0028-3886.258048.

Li L, Yiin GS, Geraghty OC, Schulz UG, Kuker W, Mehta Z, Rothwell PM; Oxford Vascular Study. Incidence, outcome, risk factors, and long-term prognosis of cryptogenic transient ischaemic attack and ischaemic stroke: a population-based study. Lancet Neurol. 2015 Sep;14(9):903-13. doi: 10.1016/S1474-4422(15)00132-5.

Arsava EM, Kim GM, Oliveira-Filho J, et al. Prediction of early recurrence after acute ischemic stroke. JAMA Neurol. 2016 Apr;73(4):396-401. doi: 10.1001/jamaneurol.2015.4949.

Kleindorfer DO, Towfighi A, Chaturvedi S, et al. 2021 Guideline for the Prevention of Stroke in Patients with Stroke and Transient Ischemic Attack: A Guideline From the American Heart Association/American Stroke Association. Stroke. 2021 Jul;52(7):e364-e467. doi: 10.1161/STR.0000000000000375.

Ay H. Advances in the diagnosis of etiologic subtypes of ischemic stroke. Curr Neurol Neurosci Rep. 2010;10(1):14-20. doi:10.1007/s11910-009-0074-x.

Radu RA, Terecoasă EO, Băjenaru OA, Tiu C. Etiologic classification of ischemic stroke: Where do we stand? Clin Neurol Neurosurg. 2017 Aug;159:93-106. doi: 10.1016/j.clineuro.2017.05.019.

Stroke: Pathophysiology, Diagnosis, and Management, 7th ed. / Ed. by J.C. Grotta, G.W. Albers, J.P. Broderick, S.E. Kasner, E.H. Lo, R.L. Sacco, L.K.S. Wong, A.L. Day. Philadelphia, USA: Elsevier; 2021. P. 249-261.

Ay H, Benner T, Arsava EM, Furie KL, et al. A computerized algorithm for etiologic classification of ischemic stroke: the Causative Classification of Stroke System. Stroke. 2007 Nov;38(11):2979-84. doi: 10.1161/STROKEAHA.107.490896.

Adams HP Jr, Bendixen BH, Kappelle LJ, et al. Classification of subtype of acute ischemic stroke. Definitions for use in a multicenter clinical trial. TOAST. Trial of Org 10172 in Acute Stroke Treatment. Stroke. 1993 Jan;24(1):35-41. doi: 10.1161/01.str.24.1.35.

Adams HP Jr, Biller J. Classification of subtypes of ischemic stroke: history of the trial of org 10172 in acute stroke treatment classification. Stroke. 2015 May;46(5):e114-7. doi: 10.1161/STROKEAHA.114.007773.

Saver JL. Cryptogenic Stroke. N Engl J Med. 2016 Sep 15;375(11):e26. doi: 10.1056/NEJMc1609156.

Yaghi S, Liberman AL, Atalay M, et al. Cardiac magnetic resonance imaging: a new tool to identify cardioaortic sources in ischaemic stroke. J Neurol Neurosurg Psychiatry. 2017 Jan;88(1):31-7. doi: 10.1136/jnnp-2016-314023.

Lyden P. Using the National Institutes of Health Stroke Scale: A cautionary tale. Stroke. 2017 Feb;48(2):513-9. doi: 10.1161/STROKEAHA.116.015434.

Zhuo Y, Qu Y, Wu J, et al. Estimation of stroke severity with National Institutes of Health Stroke Scale grading and retinal features: A cross-sectional study. Medicine (Baltimore). 2021 Aug 6;100(31):e26846. doi: 10.1097/MD.0000000000026846.

Flomin YuV, Hetman TV, Guliaieva MV, Havryliv IR, Tsurkalenko OS. Determining the etiology of cerebral stroke: from the most prevalent to rare causes. Ukrainian Interventional Neuroradiology and Surgery. 2022;40(2):14-40. doi: 10.26683/2786-4855-2022-2(40)-14-40.

Arboix A, Morcillo C, García-Eroles L, Oliveres M, Massons J, Targa C. Different vascular risk factor profiles in ischemic stroke subtypes: a study from the “Sagrat Cor Hospital of Barcelona Stroke Registry”. Acta Neurol Scand. 2000 Oct;102(4):264-70. doi: 10.1034/j.1600-0404.2000.102004264.x.

Grau AJ, Weimar C, Buggle F, Heinrich A, Goertler M, Neumaier S, et al. Risk factors, outcome, and treatment in subtypes of ischemic stroke: the German stroke data bank. Stroke. 2001 Nov;32(11):2559-66. doi: 10.1161/hs1101.098524.

How to Cite
Flomin, Y. (2023). Determining ischemic stroke subtype: an improved algorithm and its use in a comprehensive stroke unit. Ukrainian Interventional Neuroradiology and Surgery, 41(3), 29-37.